Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 30, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153581

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder caused by a deficiency of Arylsulfatase A (ARSA) enzyme activity. Its clinical manifestations include progressive motor and cognitive decline. ARSA gene mutations are frequent in MLD. METHODS AND RESULTS: In the present study, whole exome sequencing (WES) was employed to decipher the genetic cause of motor and cognitive decline in proband's of two consanguineous families from J&K (India). Clinical investigations using radiological and biochemical analysis revealed MLD-like features. WES confirmed a pathogenic variant in the ARSA gene. Molecular simulation dynamics was applied for structural characterization of the variant. CONCLUSION: We report the identification of a pathogenic missense variant (c.1174 C > T; p.Arg390Trp) in the ARSA gene in two cases of late infantile MLD from consanguineous families in Jammu and Kashmir, India. Our study utilized genetic analysis and molecular dynamics simulations to identify and investigate the structural consequences of this mutation. The molecular dynamics simulations revealed significant alterations in the structural dynamics, residue interactions, and stability of the ARSA protein harbouring the p.Arg390Trp mutation. These findings provide valuable insights into the molecular mechanisms underlying the pathogenicity of this variant in MLD.


Assuntos
Cerebrosídeo Sulfatase , Leucodistrofia Metacromática , Humanos , Cerebrosídeo Sulfatase/genética , Consanguinidade , Esterases , Índia , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/genética , Simulação de Dinâmica Molecular
2.
Curr Mol Med ; 23(9): 843-848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200196

RESUMO

Epigenetics is a powerful regulator of gene expression. With advanced discoveries in underlying molecular mechanisms that can alter chromatin response to internal and external signals, epigenetic alterations have been implicated in various developmental pathways and human disorders. The extent to which this epigenetic effect contributes to eye development and progression of ocular disorders is currently less defined. However, emerging evidence suggests that epigenetic changes are relevant in the development of eye and ocular disorders like pterygium, age-related macular degeneration, glaucoma and more. This brief review will discuss the relevance of epigenetic mechanisms like DNA methylation, histone modifications, polycomb proteins and noncoding RNAs in the context of eye development and selected ocular disorders.


Assuntos
Oftalmopatias , Degeneração Macular , Humanos , Epigênese Genética , Metilação de DNA , Cromatina , Oftalmopatias/genética , Degeneração Macular/genética
3.
Mol Biol Rep ; 48(2): 1607-1614, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33528728

RESUMO

Giant axonal neuropathy (GAN) is a severe and rare autosomal recessive neurodegenerative disorder of childhood affecting both the peripheral and central nervous systems (CNS). It is caused by mutations in the GAN (gigaxonin) gene linked to chromosome 16q24. Here, we present a 15-year-old male patient with GAN from a consanguineous family of Poonch, Jammu and Kashmir (J&K)-India. Whole-exome sequencing (WES) was employed to unravel the genetic cause of GAN in the proband. Pathogenic variant identified with WES was confirmed in other affected sibling using Sanger sequencing. Magnetic resonance imaging (MRI) and detailed clinical investigation was also carried out on proband. WES revealed a novel homozygous stopgain GAN mutation (NM_022041, c.C1028G, p.S343X) in the patient. MRI of brain displayed bilateral symmetrical confluent areas of deep white matter signal changes affecting periventricular regions (with sparing of subcortical U-fibers), posterior limbs of internal capsules, thalami, external capsules, and semioval centers. The patient was initially suspected to be a case of metachromatic leukodystrophy. However, WES analysis revealed a pathogenic variant in GAN gene as causative. No other pathogenic variant relevant to any other type of dystrophy was reported in WES. Our findings extend the geographical distribution of GAN to even a very remote region in India, extend the mutational and imaging spectrum of GAN and substantiate the need for introducing genetic testing and counselling in primary referral centers/district hospitals in India.


Assuntos
Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença , Neuropatia Axonal Gigante/genética , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cromossomos Humanos Par 16/genética , Consanguinidade , Neuropatia Axonal Gigante/diagnóstico por imagem , Neuropatia Axonal Gigante/fisiopatologia , Humanos , Índia/epidemiologia , Masculino , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento do Exoma
4.
Int J Pediatr Otorhinolaryngol ; 130: 109831, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31875531

RESUMO

BACKGROUND: Hereditary hearing loss is characterized by a very high genetic heterogeneity. The OTOF (Locus: DFNB9), encoding otoferlin, is reported to be one of the major causes of non-syndromic hearing loss, and is also reported to be the most common cause of non-syndromic recessive auditory neuropathy spectrum disorder. METHODS: In this study, whole exome sequencing was employed for detection of novel pathogenic variant that segregates with autosomal recessive nonsyndromic hearing loss in a tribal family from Rajouri, Jammu and Kashmir. Proband was a 9-year-old male born to first-cousin parents and presented with sensorineural hearing loss since birth. Family resides in an area with high consanguinity and lack of basic health care facilities including genetic counselling services. RESULTS: We report a novel OTOF pathogenic variant NM_194248.2:c.4249_4250insG (p.Ser1417CysfsTer4) co-segregating with hearing loss in this family and not present in any public databases. CONCLUSIONS: Our findings not only extend the geographical and mutational spectrum of autosomal recessive nonsyndromic hearing loss but also support the need for introducing genetic counselling services to rural and tribal areas in India with high consanguinity.


Assuntos
Surdez/genética , Proteínas de Membrana/genética , Mutação/genética , Criança , Consanguinidade , Feminino , Humanos , Índia , Masculino , Linhagem , Sequenciamento do Exoma
5.
Cerebellum ; 18(4): 807-812, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30963395

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare neurodegenerative disorder characterized by the triad of early-onset cerebellar ataxia, peripheral sensorimotor neuropathy, and lower limb spasticity. Here, we present a 28-year-old male patient with symptoms of ARSACS and mild intellectual disability from a consanguineous family of tribal J&K, India. Whole exome sequencing unraveled a novel homozygous frameshift SACS mutation (Cys2869ValfsTer15) in the patient. In addition to the well-established ARSACS imaging features, MRI revealed T2 hyperintense rim around the thalami ("bithalamic stripes") demonstrating that this feature might serve as an additional supportive diagnostic imaging marker for ARSACS. Moreover, retinal nerve fiber layer thickening which has recently been proposed as a diagnostic biomarker for ARSACS was present on routine optic coherence tomography (OCT) also in this patient, indicating that it might indeed present a relatively universal diagnostic biomarker for ARSACS. In sum, our findings extend the geographical distribution of ARSACS to even very remote tribal regions in Asia (such as the Rajouri region of J&K, India) and extend the mutational and imaging spectrum of ARSACS. They provide further support that brain imaging and OCT markers might serve as diagnostic biomarkers for ARSACS in patients with novel SACS mutations, applicable even in remote regions of the world to identify and confirm ARSACS disease.


Assuntos
Ataxia Cerebelar/genética , Espasticidade Muscular/genética , Mutação/genética , Ataxias Espinocerebelares/congênito , Adulto , Ataxia Cerebelar/diagnóstico por imagem , Consanguinidade , Exoma , Mutação da Fase de Leitura , Humanos , Índia , Deficiência Intelectual/etiologia , Imageamento por Ressonância Magnética , Masculino , Espasticidade Muscular/diagnóstico por imagem , Linhagem , Retina/patologia , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Tomografia de Coerência Óptica
6.
J Med Genet ; 56(9): 567-573, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30842223

RESUMO

Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.


Assuntos
Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Biomarcadores , Análise Citogenética , Humanos , Deficiência Intelectual/diagnóstico , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...